上一篇已经介绍过生产者消费者模型,这次使用信号量来解决该问题。

使用信号量实现生产者消费者模型:

我们用两个信号量empty和fill来分别表示缓冲区空或者填入数据项。

我们考虑信号量的初始值,因为buffer初始化为空,empty的初始值应该为buffer的容量,表示buffer中没有数据,也是就每一项都代表空,而fill则应该为空,这与消费者必须在生产者生产数据后才能进行相符合(如果消费者先执行,会因为fill信号量而阻塞)。

因为我们的缓冲区的容量超过1,如果两个生产者(pa和pb)同时put,pa线程在tail计数器更新到1之前被中断,pb开始执行,则会将老数据覆盖,所以在每次进行生产或者消费时都需要将临界区保护起来。

使用一个二值信号量来充当互斥锁。将临界区保护起来。

注意这里有一个死锁隐患。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
void* consumer(void *arg){
for(int i = 0; i < 20; i++){
sem_wait(&mutex); //to avoid dead lock, mutex must be after fill.
sem_wait(&fill);
printf("get value is %d\n", get());
sem_post(&empty);
sem_post(&mutex);
}
}

void* producer(void* arg){
for(int i = 0; i < 20; i++){
sem_wait(&mutex);
sem_wait(&empty);
put(i);
printf("put value is %d\n", i);
sem_post(&fill);
sem_post(&mutex);
}
}

例如,如果写成这个样子,有可能变为死锁。
死锁的状态是:消费者先运行,获得锁,然后对full信号量执行sem_wait(),并阻塞让出CPU(此时还持有mutex锁),然后生产者开始运行,但现在因为消费者持有mutex锁,所以也会阻塞并导致死锁。

所以要把获取和释放互斥量的操作调整为紧挨着临界区。把empty,fill的唤醒和等待操作调整到锁外。

c版本代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include<stdio.h>
#include<stdlib.h>
#include<semaphore.h>
#include<pthread.h>

int head = 0, tail = 0;
const int MAX = 20;

int buffer[20];
int size = 0;


sem_t empty, fill, mutex;

int get(){
int t = buffer[head];
head = (head + 1) % MAX;
size--;
return t;
}

void put(int a){
buffer[tail] = a;
tail = (tail + 1) % MAX;
size++;
}

void* consumer(void *arg){
for(int i = 0; i < 20; i++){
sem_wait(&fill);
sem_wait(&mutex); //to avoid dead lock, mutex must be after fill.
printf("get value is %d\n", get());
sem_post(&mutex);
sem_post(&empty);
}
}

void* producer(void* arg){
for(int i = 0; i < 20; i++){
sem_wait(&empty);
sem_wait(&mutex);
put(i);
printf("put value is %d\n", i);
sem_post(&mutex);
sem_post(&fill);
}
}




int main(){
sem_init(&empty, 0 , MAX);
sem_init(&fill, 0, 0);
sem_init(&mutex, 0, 1);
pthread_t t1,t2;
pthread_create(&t1, NULL, producer, NULL);
pthread_create(&t2, NULL, consumer, NULL);

pthread_join(t1, NULL);
pthread_join(t2, NULL);
printf("final size is %d\n", size);
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
package com.yzb.thread;

import java.util.concurrent.Semaphore;

/**
* @author yzb
*/
public class ConsumerProducerSem {
private final static int CAPACITY = 20;
private int tail = 0;
private int head = 0;
private int count = 0;
private Semaphore empty = new Semaphore(10);
private Semaphore fill = new Semaphore(0);
private Semaphore mutex = new Semaphore(1);

private int[] buffer = new int[CAPACITY];

private int get(){
int tmp = buffer[head];
head = (head+1) % CAPACITY;
count--;
return tmp;
}

private void put(int data){
buffer[tail] = data;
tail = (tail+1) % CAPACITY;
count++;
}

private void consume() throws InterruptedException {
fill.acquire();
mutex.acquire();
// System.out.println("get value is:" + get());
mutex.release();
empty.release();
}

private void product(int data) throws InterruptedException {
empty.acquire();
mutex.acquire();
put(data);
// System.out.println("put value is:" + data);
mutex.release();
fill.release();
}

public static void main(String[] args) {
for(int i = 0; i < 1e4; i++) {

ConsumerProducerSem cps = new ConsumerProducerSem();
LocalConsumerThread c = cps.new LocalConsumerThread();
LocalProducerThread p = cps.new LocalProducerThread();
Thread t1 = new Thread(c);
Thread t2 = new Thread(p);
t1.start();
t2.start();
try {
t1.join();
t2.join();
} catch (InterruptedException e) {
e.printStackTrace();
}

assert cps.count == 0;
}

}
private class LocalConsumerThread implements Runnable {
@Override
public void run() {
for(int j = 0; j < ConsumerProducerSem.CAPACITY; j++){
try {
ConsumerProducerSem.this.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}

private class LocalProducerThread implements Runnable {
@Override
public void run() {
for(int j = 0; j < ConsumerProducerSem.CAPACITY; j++){
try {
ConsumerProducerSem.this.product(j);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}